Why fusion ignition is being hailed as a major breakthrough in fusion – a nuclear physicist explains


The technique used at the National Ignition Facility involved shooting 192 lasers at a 0.04 inch (1 mm) pellet of fuel made of deuterium and tritium – two versions of the element hydrogen with extra neutrons – placed in a gold canister. When the lasers hit the canister, they produce X-rays that heat and compress the fuel pellet to about 20 times the density of lead and to more than 5 million degrees Fahrenheit (3 million Celsius) – about 100 times hotter than the surface of the Sun. If you can maintain these conditions for a long enough time, the fuel will fuse and release energy.

The fuel and canister get vaporized within a few billionths of a second during the experiment. Researchers then hope their equipment survived the heat and accurately measured the energy released by the fusion reaction.

So what did they accomplish?

To assess the success of a fusion experiment, physicists look at the ratio between the energy released from the process of fusion and the amount of energy within the lasers. This ratio is called gain.

Anything above a gain of 1 means that the fusion process released more energy than the lasers delivered.

On Dec. 5, 2022, the National Ignition Facility shot a pellet of fuel with 2 million joules of laser energy – about the amount of power it takes to run a hair dryer for 15 minutes – all contained within a few billionths of a second. This triggered a fusion reaction that released 3 million joules. That is a gain of about 1.5, smashing the previous record of a gain of 0.7 achieved by the facility in August 2021.

How big a deal is this result?

Fusion energy has been the “holy grail” of energy production for nearly half a century. While a gain of 1.5 is, I believe, a truly historic scientific breakthrough, there is still a long way to go before fusion is a viable energy source.

While the laser energy of 2 million joules was less than the fusion yield of 3 million joules, it took the facility nearly 300 million joules to produce the lasers used in this experiment. This result has shown that fusion ignition is possible, but it will take a lot of work to improve the efficiency to the point where fusion can provide a net positive energy return when taking into consideration the entire end-to-end system, not just a single interaction between the lasers and the fuel.





Source link

spot_imgspot_img

Subscribe

Related articles

Milky Way stars found nearly halfway to Andromeda Galaxy

Astronomers have found a slew of stars lingering...

Sunrays on Mars, captured by Curiosity

Sunrays on Mars NASA released the photographs above and...

Animal astronomers: A bird’s eye view of the night sky

Later experiments, during which younger birds seen a...

Two potentially habitable planets found orbiting distant star

Particular strategies for detecting exoplanets, just like the...

World’s 1st 3D-printed rocket to launch from Cape Canaveral

https://www.youtube.com/watch?v=_YAlOGZM32UWatch the livestream right here for the primary...
spot_imgspot_img

LEAVE A REPLY

Please enter your comment!
Please enter your name here